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Abstract

Graph theory—modeling entities as vertices and their relationships as edges—has been applied across
domains from anatomical networks (e.g. teeth) to social systems [1, 2]. In psychology and the social
sciences, Behavior Graphs capture temporal sequences of actions or states, while Semantic Graphs
represent conceptual associations underlying memory and cognition. Here, we extend both models using
HyperGraphs and SuperHyperGraphs to create hierarchical, multi-scale representations. This framework
enables nested modeling of cognitive and behavioral structures, offering a versatile approach for analyzing
complex phenomena in psychological and social research.
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1|Introduction
We fix notation and recall key definitions used throughout this paper. Unless otherwise stated, all graphs are
finite. For comprehensive treatments, see the cited references.
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1.1| Hypergraphs and SuperHyperGraphs
Graph theory models anatomical structures such as teeth and their spatial or functional relationships by
representing each tooth as a vertex and each connection as an edge [1, 2]. A hypergraph extends this notion
by allowing each hyperedge to connect any nonempty subset of vertices simultaneously [3, 4, 5]. HyperGraphs
have been applied across various fields, including artificial intelligence and chemistry [6, 7, 8, 9, 10]. Building
on this, a SuperHyperGraph employs iterative powerset constructions to build hierarchical layers of vertices
and hyperedges, thereby capturing nested, multi-scale relationships [11, 12, 13, 14, 15]. Here, the integer n ≥ 0
denotes the depth of powerset iteration.

Definition 1.1 (Graph). [16] A graph is an ordered pair G = (V, E) where

• V is a finite set of vertices,

• E ⊆ V × V is a set of unordered or ordered pairs of distinct vertices, called edges.

Example 1.2 (Social Network Graph). (cf.[17]) Let V = {Ayano, Jose, Taro, Ziro} represent four individuals,
and

E =
{

{Ayano, Jose}, {Jose, Taro}, {Taro, Ziro}
}

represent mutual “friendship” ties. Then
G = (V, E)

is a graph modeling the social connections among these four people.

Definition 1.3 (Base Set). Let V0 be a finite set, called the base set. All subsequent constructions are drawn
from V0 or its iterated powersets.

Definition 1.4 (Powerset). [18] For any set X, its powerset is

P(X) =
{

A | A ⊆ X
}

.

Definition 1.5 (Hypergraph). [3, 4] A hypergraph is a pair H = (V, E) where

• V is a finite set of vertices,

• E ⊆ P(V ) \ {∅} is a finite family of nonempty subsets of V , called hyperedges.

Example 1.6 (Major Depressive Symptom Hypergraph). (cf.[19, 20]) Let V be the set of common symptoms of
major depression:

V = { Sadness, Anhedonia, Fatigue, Sleep Disturbance,

Appetite Change, Weight Loss, Concentration Impairment}.

Define the hyperedge set
E =

{
{Sadness, Anhedonia, Fatigue},

{Sleep Disturbance, Fatigue, Concentration Impairment}, {Appetite Change, Weight Loss}
}

.

Then
H = (V, E)

is a hypergraph modeling symptom clusters in major depression. Each hyperedge groups together symptoms
that frequently co-occur, reflecting underlying latent dimensions such as mood, neurovegetative, and cognitive
domains.

Definition 1.7 (n-th Powerset). [21, 22, 23] Define inductively for k ≥ 0:

P0(V0) = V0, Pk+1(V0) = P
(
Pk(V0)

)
.

We write Pn(V0) for Pn(V0) and denote by P∗
n(V0) its collection of nonempty subsets.
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Example 1.8 (Second Powerset of Basic Emotions). Let the base set of primary emotions be
V0 = { Joy, Sadness, Fear, Anger}.

Then the first powerset is
P1(V0) = P(V0) =

{
{Joy}, {Sadness}, {Fear}, {Anger}, {Joy, Sadness}, . . . , {Joy, Sadness, Fear, Anger}

}
.

The second powerset is
P2(V0) = P

(
P1(V0)

)
,

whose elements are all nonempty collections of subsets of V0. For instance:{
{Joy}, {Sadness}

}
and

{
{Fear, Anger}, {Joy, Fear}

}
are two representative members of P2(V0). Such higher-order collections can model cognitive groupings of
emotion-clusters in hierarchical analyses.

Notation 1.9 (Iterated powerset). For a set X and k ∈ N0, define

P 0(X) := X, P k+1(X) := P
(
P k(X)

)
.

We call the elements of P n(X) the level-n objects over X.

Definition 1.10 (n-SuperHyperGraph). [24, 25, 26, 27] Let V0 be a nonempty base set and n ∈ N. An
n-SuperHyperGraph is a pair

SuHyG(n) = (V, E),
where the n-supervertex set V satisfies V ⊆ P n(V0), and the n-superedge set is a family of nonempty subsets of
V :

E ⊆ P(V ) \ {∅}.

Thus, each n-superedge e ∈ E is a set whose elements are n-supervertices (i.e. elements of V ⊆ P n(V0)).

Remark 1.11 (Why E ⊆ P(V ) is the correct typing). In a (super)hypergraph, edges are collections of vertices.
Since V ⊆ P n(V0) already fixes the type of n-supervertices, edges must live one powerset level above V , namely
inside P(V ). Writing E ⊆ P n(V0) would incorrectly type edges as vertices rather than sets of vertices.

Example 1.12 (Depressive Symptom 2-SuperHyperGraph). Let the base set of common major-depressive
symptoms be

V0 = {Sadness, Anhedonia, Fatigue, Sleep Disturbance, Appetite Change, Concentration Impairment}.

Define level-1 hyperedges (symptom clusters) by

E(1) =
{

emood = {Sadness, Anhedonia, Fatigue},

esleep = {Sleep Disturbance, Fatigue, Concentration Impairment},

esomatic = {Appetite Change, Fatigue}
}

.

Set the level-2 supervertex set to be the full level-2 objects,
V2 := P 2(V0) = P

(
P(V0)

)
,

and define the level-2 superedges by “lifting” each level-1 edge to all of its nonempty subcollections:

E2 :=
{

P(e) \ {∅}
∣∣ e ∈ E(1) }

⊆ P(V2).
Two representative level-2 superedges are

P(emood) \ {∅} =
{

{Sadness}, {Anhedonia}, . . . , {Sadness, Anhedonia, Fatigue}
}

,

P(esleep) \ {∅} =
{

{Sleep Disturbance}, {Fatigue}, . . . ,

{Sleep Disturbance, Fatigue, Concentration Impairment}
}

.

Each displayed superedge is a subset of V2; hence E2 ⊆ P(V2) as required.
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Example 1.13 (Cognitive Function 3-SuperHyperGraph). Let the base set of core cognitive domains be

V0 = {Memory, Attention, ExecutiveFunction}.

Define two level-1 hyperedges

e1 = {Memory, Attention}, e2 = {Attention, ExecutiveFunction}.

Form their level-2 lifts

P(e1) \ {∅} =
{

{Memory}, {Attention}, {Memory, Attention}
}

,

and analogously for e2. For n = 3, take

V3 := P 3(V0), E3 :=
{

P 2(e) \ {∅}
∣∣ e ∈ {e1, e2}

}
⊆ P(V3),

where P 2(e) = P
(
P(e)

)
. Two representative level-3 superedges are

P 2(e1) \ {∅} =
{

{{Memory}, {Attention}}, {{Memory, Attention}}, . . .
}

,

P 2(e2) \ {∅} =
{

{{Attention}, {ExecutiveFunction}}, {{Attention, ExecutiveFunction}}, . . .
}

.

Thus E3 ⊆ P(V3), i.e. every level-3 superedge is a set of level-3 supervertices.

2| Behavior Graph and Their Extensions
A Behavior Graph represents observed actions or states as nodes, with edges indicating transitions or sequences
between behaviors over time (cf.[28, 29, 30, 31, 32]). In this section, we explore their extensions using HyperGraphs
and SuperHyperGraphs.

Definition 2.1 (Behavior Graph). A Behavior Graph in the social sciences is a directed, weighted graph

G = (V, E, f, p),

where

• V is a finite set of behavioral states (e.g. actions or observed events),

• E ⊆ V × V is the set of transitions between states,

• f : E → N assigns each transition (u, v) ∈ E a frequency of occurrence,

• p : E → [0, 1] assigns each transition (u, v) ∈ E a probability or normalized weight, with

p(u, v) = f(u, v)∑
w : (u,w)∈E f(u, w) .

Example 2.2 (Smartphone Usage Behavior Graph). Let

V = { UnlockPhone, ViewNotifications, OpenApp,

SendMessage, LockPhone},

and
E =

{
(UnlockPhone, ViewNotifications), (UnlockPhone, OpenApp),

(ViewNotifications, OpenApp), (ViewNotifications, LockPhone),
(OpenApp, SendMessage), (OpenApp, LockPhone), (SendMessage, LockPhone)

}
.

Define the frequency function f : E → N by
f(UnlockPhone, ViewNotifications) = 120, f(UnlockPhone, OpenApp) = 80,

f(ViewNotifications, OpenApp) = 100, f(ViewNotifications, LockPhone) = 20,

f(OpenApp, SendMessage) = 50, f(OpenApp, LockPhone) = 30,

f(SendMessage, LockPhone) = 50.
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The transition probability function p : E → [0, 1] is then

p(u, v) = f(u, v)∑
w : (u,w)∈E f(u, w) .

For example,
p(UnlockPhone, ViewNotifications) = 120

120 + 80 = 0.60,

p(OpenApp, SendMessage) = 50
50 + 30 = 0.625.

Hence
G = (V, E, f, p)

is a Behavior Graph modeling typical transitions users perform during a smartphone session.

Example 2.3 (E-Commerce Session Behavior Graph). An E-Commerce Session is a continuous sequence of
user interactions with an online store, typically ending with inactivity or checkout (cf.[33, 34]). Let

V = { ViewProduct, AddToCart,

RemoveFromCart, Checkout, Exit},

and
E =

{
(ViewProduct, AddToCart), (ViewProduct, Exit), (AddToCart, Checkout), (AddToCart, RemoveFromCart),

(RemoveFromCart, AddToCart), (RemoveFromCart, Exit), (Checkout, Exit)
}

.

Define the frequency function f : E → N by
f(ViewProduct, AddToCart) = 40, f(ViewProduct, Exit) = 160,

f(AddToCart, Checkout) = 25, f(AddToCart, RemoveFromCart) = 15,

f(RemoveFromCart, AddToCart) = 5, f(RemoveFromCart, Exit) = 15,

f(Checkout, Exit) = 25.

The transition probability function p : E → [0, 1] is then

p(u, v) = f(u, v)∑
w : (u,w)∈E f(u, w) .

For instance,

p(ViewProduct, AddToCart) = 40
40 + 160 = 0.20, p(AddToCart, Checkout) = 25

25 + 15 = 0.625.

Hence
G = (V, E, f, p)

is a Behavior Graph modeling typical user transitions during an online shopping session.

A Behavior HyperGraph models behavioral states as vertices, hyperedges grouping co-occurring states or
joint transitions, with weights aggregating transition frequencies. A Behavior SuperHyperGraph hierarchically
lifts a Behavior HyperGraph via iterated powersets, forming level-n vertices and superedges from hyperedge
subcollections systematically. We state these definitions below.

Definition 2.4 (Behavior HyperGraph). Let G = (V, EG, f, p) be a Behavior Graph. A Behavior HyperGraph
is a tuple

H =
(
V, EH , F, P

)
,

where

• V is the same finite set of behavioral states as in G,

• EH ⊆ P(V ) \ {∅} is a family of nonempty subsets of V , called hyperedges, each representing a frequently
co-occurring set of states,
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• F : EH → N assigns each hyperedge e its aggregate frequency F (e) =
∑

(u,v)∈e×e, u̸=v

f(u, v),

• P : EH → [0, 1] assigns each e a normalized weight P (e) = F (e)
maxe′∈EH

F (e′) .

Example 2.5 (Workplace Communication Behavior HyperGraph). Consider the set of behavioral states for
workplace communication:

V = { Email, Chat, Meeting, DocumentShare}.

Suppose the Behavior Graph G = (V, EG, f, p) records the following transition frequencies f(u, v):

f(u, v) Email Chat Meeting DocumentShare
Email ˘ 30 15 0
Chat 20 ˘ 12 25

Meeting 10 7 ˘ 5
DocumentShare 0 20 8 ˘

All other f(u, v) not listed are zero.

The induced Behavior HyperGraph H = (V, EH , F, P ) uses:
EH =

{
{u, v} : (u, v) ∈ EG

}
∪

{
{c} ∪ Nout

c : |Nout
c | ≥ 2

}
,

where Nout
c = { v : (c, v) ∈ EG}. Concretely,

EH = { {Email, Chat}, {Email, Meeting}, {Chat, Meeting}, {Chat, DocumentShare},

{Meeting, DocumentShare},

{Email, Chat, Meeting}, {Chat, Email, DocumentShare},

{Meeting, Email, DocumentShare}, {DocumentShare, Chat, Meeting}}.

The aggregate frequency F on each hyperedge e is

F (e) =
∑

(u,v)∈EG
u,v∈e

f(u, v),

and the normalized weight is
P (e) = F (e)

maxe′∈EH
F (e′) .

A few values are:

F
(
{Email, Chat}

)
= 30 + 20 = 50 P

(
{Email, Chat}

)
= 50

95 ≈ 0.526
F

(
{Chat, DocumentShare}

)
= 25 + 20 = 45 P

(
{Chat, DocumentShare}

)
= 45

95 ≈ 0.474
F

(
{Email, Chat, Meeting}

)
= 30+20+15+10+12+7 =

94
P

(
{Email, Chat, Meeting}

)
= 94

95 ≈ 0.989

F
(
{Chat, Email, DocumentShare}

)
= 20 + 30 + 25 +

20 = 95
P

(
{Chat, Email, DocumentShare}

)
= 1.00

Thus
H = (V, EH , F, P )

is a Behavior HyperGraph capturing both pairwise and multi-state co-occurrence patterns in workplace commu-
nication behavior.

Example 2.6 (Emotion Regulation Behavior HyperGraph). Consider the set of emotion-regulation states from
Gross’s process model:

V = { SituationSelection, SituationModification, AttentionalDeployment,
CognitiveChange, ResponseModulation}.
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Suppose observational data yields the following transition frequencies f : V × V → N:

f(u, v) SitSel SitMod AttDep CogCh RespMod
SitSel ˘ 10 0 0 0

SitMod 0 ˘ 12 0 0
AttDep 0 0 ˘ 15 0
CogCh 0 7 0 ˘ 8

RespMod 0 0 5 0 ˘
All other f(u, v) = 0. The transition-probabilities p(u, v) = f(u, v)/

∑
w f(u, w) then define the Behavior Graph

G =
(
V, EG, f, p

)
.

Its induced Behavior HyperGraph
H =

(
V, EH , F, P

)
has hyperedges

EH =
{

{u, v} : (u, v) ∈ EG

}
∪

{
{CogCh, RespMod, AttDep}

}
∪

{
{AttDep, SitMod, CogCh, RespMod}

}
.

Here
F (e) =

∑
(u,v)∈EG

u,v∈e

f(u, v), P (e) = F (e)
maxe′∈EH

F (e′) .

A few values are:

F
(
{SitMod, AttDep}

)
= 12 P

(
{SitMod, AttDep}

)
= 12

47 ≈ 0.255
F

(
{CogCh, RespMod, AttDep}

)
= 8 + 7 + 15 + 5 = 35 P

(
{CogCh, RespMod, AttDep}

)
= 35

47 ≈ 0.745
F

(
{AttDep, SitMod, CogCh, RespMod}

)
= 12 + 15 +

7 + 8 + 5 = 47
P

(
{AttDep, SitMod, CogCh, RespMod}

)
= 1.00

Thus
H = (V, EH , F, P )

is a Behavior HyperGraph capturing both pairwise transitions and multi-state co-occurrence patterns in emotion-
regulation behavior.

Theorem 2.7. Every Behavior Graph G = (V, EG, f, p) admits a natural Behavior HyperGraph
H = (V, EH , F, P ), and the 2–section (clique-expansion) of H recovers G.

Proof : Define
EH =

{
e ⊆ V : |e| ≥ 2 and ∃(u, v) ∈ EG, u, v ∈ e

}
.

Each e groups together states that co-occur in at least one transition of G. By construction EH ⊆ P(V ) \ {∅}.

For each e ∈ EH , let

F (e) =
∑

(u,v)∈EG
u,v∈e

f(u, v), P (e) = F (e)
maxe′∈EH

F (e′) .

Form the 2–section (clique-expansion) graph Γ(H) = (V, E′) by
E′ =

{
{u, v} ⊆ V : ∃e ∈ EH , {u, v} ⊆ e

}
.

If (u, v) ∈ EG, then {u, v} ⊆ e for e = {u, v} ∈ EH , so {u, v} ∈ E′. Conversely, any {u, v} ∈ E′ arises from some
e ∈ EH , and thus (u, v) ∈ EG or (v, u) ∈ EG. Hence Γ(H) coincides with the undirected support of G. □

Theorem 2.8. Every Behavior HyperGraph H = (V, EH , F, P ) is a hypergraph in the sense of Definition 1.5.

Proof : By definition EH ⊆ P(V ) \ {∅}. Therefore H satisfies the hypergraph axioms immediately. □
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Definition 2.9 (Behavior n-SuperHyperGraph). Let
G = (V, EG, f, p)

be a Behavior Graph and let
H = (V, EH , F, P )

be its induced Behavior HyperGraph. For any integer n ≥ 1, the Behavior n-SuperHyperGraph is defined as the
tuple

BHG(n) =
(
Vn, En, F (n), P (n)),

where
Vn = Pn(V ), En =

{
P n−1(e) \ {∅}

∣∣ e ∈ EH

}
,

and the label functions are propagated by
F (n)(P n−1(e) \ {∅}

)
= F (e), P (n)(P n−1(e) \ {∅}

)
= P (e).

Example 2.10 (Emotion Regulation 2-SuperHyperGraph). Let the Behavior Graph G = (V, EG, f, p) and its
induced Behavior HyperGraph

H = (V, EH , F, P )
be as in Example 2.6, where

V = { SitSel, SitMod, AttDep, CogCh, RespMod},

and
EH =

{
{SitMod, AttDep}, {AttDep, CogCh, RespMod},

{SitMod, AttDep, CogCh, RespMod}
}

,

with aggregate frequencies
F ({SitMod, AttDep}) = 12,

F ({AttDep, CogCh, RespMod}) = 15 + 8 + 5 = 28,

F ({SitMod, AttDep, CogCh, RespMod}) = 12 + 15 + 8 + 5 + 7 = 47,

and normalized weights P (e) = F (e)/47 .

For n = 2, the Behavior 2-SuperHyperGraph is

BHG(2) =
(
V2, E2, F (2), P (2)),

where
V2 = P2(V ),

E2 =
{

P(e) \ {∅} : e ∈ EH

}
,

and for each hyperedge e ∈ EH ,
F (2)(P(e) \ {∅}

)
= F (e), P (2)(P(e) \ {∅}

)
= P (e).

Two representative level-2 superedges are:

• Pair superedge at SituationModification–AttentionalDeployment:
P

(
{SitMod, AttDep}

)
\ {∅} = {{SitMod}, {AttDep}, {SitMod, AttDep}},

carrying F (2) = 12 and P (2) = 12/47 ≈ 0.255.

• Junction superedge at the triple cluster {AttDep, CogCh, RespMod}:
P

(
{AttDep, CogCh, RespMod}

)
\ {∅}

= {{AttDep}, {CogCh}, {RespMod}, {AttDep, CogCh}, {AttDep, RespMod}, {CogCh, RespMod},

{AttDep, CogCh, RespMod}},

carrying F (2) = 28 and P (2) = 28/47 ≈ 0.596.

These level-2 superedges unpack each hyperedge into all its nonempty subcollections, enabling hierarchical
analysis of emotion-regulation sequences at multiple scales.
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Example 2.11 (Online Learning Behavior 2-SuperHyperGraph). Consider the set of behavioral states in an
online course:

V = { VideoLecture, Quiz, ForumDiscussion, AssignmentSubmission, PeerReview}.

From learning-management-system logs, we observe the following transition frequencies f : V × V → N:

f(u, v) VideoLecture Quiz ForumDiscussion AssignmentSubmission PeerReview
VideoLecture ˘ 50 20 10 0

Quiz 40 ˘ 15 25 5
ForumDiscussion 10 5 ˘ 30 15

AssignmentSubmission 0 10 20 ˘ 25
PeerReview 0 5 10 30 ˘

All other f(u, v) are zero. The induced Behavior HyperGraph
H = (V, EH , F, P )

has hyperedges
EH = {{u, v} : (u, v) ∈ EG}

∪ {{VideoLecture, Quiz, ForumDiscussion}} ∪ {{Quiz, ForumDiscussion, AssignmentSubmission}}
∪ {{ForumDiscussion, AssignmentSubmission, PeerReview}},

grouping states with two or more common transitions. The aggregate frequency and normalized weight are

F (e) =
∑

(u,v)∈EG
u,v∈e

f(u, v), P (e) = F (e)
maxe′∈EH

F (e′) .

For instance,
F ({VideoLecture, Quiz}) = 50 + 40 = 90, P ({VideoLecture, Quiz}) = 90

185 ≈ 0.486,

F ({VideoLecture, Quiz, ForumDiscussion}) = 50 + 40 + 20 + 15 + 5 + 10 = 140, P = 140/185 ≈ 0.757.

Hence the Behavior 2-SuperHyperGraph

BHG(2) = (V2, E2, F (2), P (2)),
with

V2 = P2(V ),
E2 = {P(e) \ {∅} : e ∈ EH},

and F (2)(P(e) \ {∅}) = F (e), P (2)(P(e) \ {∅}) = P (e), unpacks each hyperedge into its nonempty subcollections.
This hierarchical model enables multi-scale analysis of student activity patterns in online learning.

Theorem 2.12. For any Behavior HyperGraph H = (V, EH , F, P ) and integer n ≥ 1:

(1) BHG(n) is an n-SuperHyperGraph.

(2) BHG(1) recovers H exactly, i.e. it generalizes the Behavior HyperGraph.

Proof : (1) n-SuperHyperGraph structure. By construction
Vn = Pn(V ), En ⊆ P

(
Vn

)
\ {∅}.

Hence BHG(n) = (Vn, En, F (n), P (n)) satisfies the definition of an n-SuperHyperGraph.

(2) Generalization of H. When n = 1, note P0(e) = e for each e ∈ EH . Therefore
V1 = P(V ), E1 =

{
e | e ∈ EH

}
= EH .

Moreover, for each e ∈ EH ,
F (1)(e) = F (e), P (1)(e) = P (e).
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There is a natural bijection ι : V → {{v} : v ∈ V } ⊂ V1, identifying each original state v with its singleton
{v}. Under this identification, BHG(1) is isomorphic to H. Thus BHG(1) recovers and generalizes the Behavior
HyperGraph. □

3| Semantic Graph and Their Extensions
A Semantic Graph models concepts as nodes and meaning-based associations as edges, capturing the structure
of mental organization and processes such as memory retrieval (cf. [35, 36, 37, 38, 39]). Semantic graphs are
utilized not only in psychology but also in the fields of social science and artificial intelligence (cf.[40, 41, 42]).
In this section, we explore their extensions using HyperGraphs and SuperHyperGraphs.

Definition 3.1 (Semantic Graph). A Semantic Graph is a directed, labeled, and weighted graph
G = (V, E, L, ℓ, w),

where

• V is a finite set of concepts or terms,

• E ⊆ V × V is the set of directed edges representing semantic relations,

• L is a finite set of relation labels (e.g. is_a, part_of, associated_with),

• ℓ : E → L is a labeling function that assigns to each edge its semantic relation type,

• w : E → [0, 1] is a weight function that assigns to each edge a nonnegative real value reflecting the
strength or confidence of the relation.

Example 3.2 (Mental Health Symptom Semantic Graph). Let
V = { Stress, Anxiety, Depression, Coping, SocialSupport},

L = { triggers, contributes_to, enhances, mitigates },

and define the directed edge set
E =

{
(Stress, Anxiety), (Anxiety, Depression), (SocialSupport, Coping), (Coping, Depression)

}
.

Assign relation labels by

ℓ :


(Stress, Anxiety) 7→ triggers,

(Anxiety, Depression) 7→ contributes_to,

(SocialSupport, Coping) 7→ enhances,

(Coping, Depression) 7→ mitigates,

and weights

w :


(Stress, Anxiety) 7→ 0.85,

(Anxiety, Depression) 7→ 0.75,

(SocialSupport, Coping) 7→ 0.80,

(Coping, Depression) 7→ 0.65.

Then
G =

(
V, E, L, ℓ, w

)
is a Semantic Graph modeling key associations among mental health constructs in social-science research.

Example 3.3 (Intergroup Relations Semantic Graph). Let
V = { SocialIdentity, SelfEsteem, GroupCohesion, IntergroupConflict},

L = { influences, mediates, moderates },

and
E =

{
(SocialIdentity, SelfEsteem), (SelfEsteem, GroupCohesion), (GroupCohesion, IntergroupConflict),
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(SocialIdentity, GroupCohesion), (SelfEsteem, IntergroupConflict)
}

.

Define the labeling function ℓ : E → L by

ℓ :



(SocialIdentity, SelfEsteem) 7→ influences,

(SelfEsteem, GroupCohesion) 7→ mediates,

(GroupCohesion, IntergroupConflict) 7→ influences,

(SocialIdentity, GroupCohesion) 7→ moderates,

(SelfEsteem, IntergroupConflict) 7→ mediates,

and the weight function w : E → [0, 1] by

w :



(SocialIdentity, SelfEsteem) 7→ 0.85,

(SelfEsteem, GroupCohesion) 7→ 0.75,

(GroupCohesion, IntergroupConflict) 7→ 0.65,

(SocialIdentity, GroupCohesion) 7→ 0.70,

(SelfEsteem, IntergroupConflict) 7→ 0.60.

Then
G =

(
V, E, L, ℓ, w

)
is a Semantic Graph modeling core associations among constructs in intergroup relations research.

A Semantic HyperGraph represents concepts as vertices, linking multiple related concepts via hyperedges to
capture contextual meaning. A Semantic SuperHyperGraph extends semantic hypergraphs, forming higher-order
supervertices and superedges through iterated powersets for hierarchical semantic representation. In this section,
we explore their extensions using HyperGraphs and SuperHyperGraphs.

Definition 3.4 (Semantic HyperGraph). Let
G = (V, E, L, ℓ, w)

be a Semantic Graph. Its Semantic HyperGraph is the tuple
H =

(
V, EH , LH , ℓH , wH

)
,

where
EH =

{
{u, v} : (u, v) ∈ E

}
∪

{
{c}∪Nout

c : |Nout
c | ≥ 2

}
∪

{
{c}∪N in

c : |N in
c | ≥ 2

}
,

with
Nout

c = { v : (c, v) ∈ E}, N in
c = { u : (u, c) ∈ E}.

The hyperedge label set is
LH = P(L) \ {∅},

and the labeling function ℓH : EH → LH is
ℓH(e) = { ℓ(u, v) : (u, v) ∈ E, {u, v} ⊆ e}.

The weight function wH : EH → [0, 1] is
wH(e) = max

(u,v)∈E
{u,v}⊆e

w(u, v).

Example 3.5 (Socio-Political Semantic HyperGraph). Let the underlying Semantic Graph G = (V, E, L, ℓ, w)
be defined by

V = { SocialCapital, Trust, MediaInfluence,

PoliticalParticipation, SocialCohesion, EconomicInequality},

relation labels
L = { influences, mediates, increases, reduces },

and directed edges
E =

{
(SocialCapital, PoliticalParticipation),
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(Trust, PoliticalParticipation), (MediaInfluence, PoliticalParticipation),
(SocialCapital, SocialCohesion), (EconomicInequality, SocialCohesion)

}
.

Assign labels by

ℓ :



(SocialCapital, PoliticalParticipation) 7→ influences,

(Trust, PoliticalParticipation) 7→ mediates,

(MediaInfluence, PoliticalParticipation) 7→ influences,

(SocialCapital, SocialCohesion) 7→ increases,

(EconomicInequality, SocialCohesion) 7→ reduces,

and weights by

w :



(SocialCapital, PoliticalParticipation) 7→ 0.75,

(Trust, PoliticalParticipation) 7→ 0.65,

(MediaInfluence, PoliticalParticipation) 7→ 0.80,

(SocialCapital, SocialCohesion) 7→ 0.70,

(EconomicInequality, SocialCohesion) 7→ 0.60.

Then the induced Semantic HyperGraph
H =

(
V, EH , LH , ℓH , wH

)
has hyperedges

EH = {{u, v} : (u, v) ∈ E}
∪ {{SocialCapital, PoliticalParticipation, SocialCohesion}}
∪ {{SocialCapital, Trust, MediaInfluence, PoliticalParticipation}}
∪ {{SocialCapital, EconomicInequality, SocialCohesion}}.

The hyperedge label set is
LH = P(L) \ {∅},

and for each e ∈ EH ,
ℓH(e) = {ℓ(u, v) | (u, v) ∈ E, {u, v} ⊆ e},

wH(e) = max{w(u, v) | (u, v) ∈ E, {u, v} ⊆ e}.

Hence, for example,
ℓH({SocialCapital, PoliticalParticipation, SocialCohesion}) = {influences, increases},

wH({SocialCapital, PoliticalParticipation, SocialCohesion}) = 0.75,

and
ℓH({SocialCapital, Trust, MediaInfluence, PoliticalParticipation})

= {influences, mediates},

wH({SocialCapital, Trust, MediaInfluence, PoliticalParticipation}) = 0.80.

This Semantic HyperGraph captures both pairwise and multi-concept associations in socio-political cognition.

Example 3.6 (Mental Health Symptom Semantic HyperGraph). Let the underlying Semantic Graph G =
(V, E, L, ℓ, w) be as in Example 3.2, with

V = { Stress, Anxiety, Depression, Coping, SocialSupport},

relation labels
L = { triggers, contributes_to, enhances, mitigates },

and directed edges
E =

{
(Stress, Anxiety), (Anxiety, Depression), (SocialSupport, Coping), (Coping, Depression)

}
.

Then the Semantic HyperGraph
H =

(
V, EH , LH , ℓH , wH

)
is defined by

EH =
{

{u, v} : (u, v) ∈ E
}

∪
{

{ Depression, Anxiety, Coping}
}

,

A hierarchical hypergraph and superhypergraph framework for ...                                      34



since Depression has two distinct semantic predecessors Anxiety and Coping. The hyperedge label set is

LH = P(L) \ {∅},

and for each e ∈ EH we set
ℓH(e) = { ℓ(u, v) : (u, v) ∈ E, {u, v} ⊆ e},

wH(e) = max
(u,v)∈E
{u,v}⊆e

w(u, v).

Hence:

Hyperedge Labels Weight
{Stress, Anxiety} {triggers} 0.85
{Anxiety, Depression} {contributes_to} 0.75
{SocialSupport, Coping} {enhances} 0.80
{Coping, Depression} {mitigates} 0.65
{Depression, Anxiety, Coping} {contributes_to, mitigates} 0.75

This Semantic HyperGraph H groups co-occurring concepts and identifies the junction hyperedge at Depression,
capturing multi-concept associations in mental-health cognition.

Theorem 3.7. The Semantic HyperGraph H = (V, EH , LH , ℓH , wH) is a hypergraph, and its 2-section (clique-
expansion) Γ(H) recovers the undirected support of the original Semantic Graph G.

Proof : First, by construction EH ⊆ P(V ) \ {∅}, so H satisfies the definition of a hypergraph.

Next, form the 2-section graph Γ(H) = (V, E′) where

E′ =
{

{u, v} ⊆ V : ∃ e ∈ EH , {u, v} ⊆ e
}

.

If (u, v) ∈ E, then {u, v} ∈ EH by definition, so {u, v} ∈ E′. Conversely, if {u, v} ∈ E′, there exists e ∈ EH

with {u, v} ⊆ e. If e = {u, v}, then (u, v) ∈ E or (v, u) ∈ E. Otherwise e = {c} ∪ N for some c, and {u, v} ⊆ e
implies one of u, v equals c and the other lies in N , so again (u, v) ∈ E or (v, u) ∈ E. Thus E′ coincides with
the set of unordered pairs arising from edges of G, i.e. the undirected support of G. □

Definition 3.8 (Semantic n-SuperHyperGraph). Let

G = (V, E, L, ℓ, w)

be a Semantic Graph, and let
H = (V, EH , LH , ℓH , wH)

be its induced Semantic HyperGraph. For any integer n ≥ 1, the Semantic n-SuperHyperGraph is the tuple

SNHG(n) =
(
Vn, En, Ln, ℓn, wn

)
,

where
Vn = Pn(V ),

En =
{

P n−1(e) \ {∅}
∣∣ e ∈ EH

}
,

Ln = P(LH) \ {∅},

ℓn

(
P n−1(e) \ {∅}

)
= ℓH(e),

wn

(
P n−1(e) \ {∅}

)
= wH(e).
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Example 3.9 (Mental Health Symptom Semantic 2-SuperHyperGraph). Let the underlying Semantic Graph
G = (V, E, L, ℓ, w) be as in Example 3.2, where

V = { Stress, Anxiety, Depression, Coping, SocialSupport},

and the induced Semantic HyperGraph

H = (V, EH , LH , ℓH , wH)

has hyperedges

EH =
{

{Stress, Anxiety}, {Anxiety, Depression}, {SocialSupport, Coping},

{Coping, Depression}, {Anxiety, Depression, Coping}
}

.

Then the Semantic 2-SuperHyperGraph SNHG(2) = (V2, E2, L2, ℓ2, w2) is defined by

V2 = P2(V ),

E2 =
{

P(e) \ {∅}
∣∣ e ∈ EH

}
,

L2 = P(LH) \ {∅},

ℓ2
(
P(e) \ {∅}

)
= ℓH(e),

w2
(
P(e) \ {∅}

)
= wH(e).

Two representative level-2 superedges are:

• Trigger superedge:
P

(
{Stress, Anxiety}

)
\ {∅}

=
{

{Stress}, {Anxiety}, {Stress, Anxiety}
}

,

carrying labels ℓ2 = {triggers} and weight w2 = 0.85.

• Junction superedge at Depression:
P

(
{Anxiety, Depression, Coping}

)
\ {∅}

=
{

{Anxiety}, {Depression}, {Coping}, {Anxiety, Depression}, . . . ,

{Anxiety, Depression, Coping}
}

,

with labels ℓ2 = {contributes_to, mitigates} and weight w2 = 0.75.

These level-2 superedges unpack each hyperedge into all its nonempty subcollections, enabling hierarchical
analysis of multi-concept associations in mental-health cognition.

Example 3.10 (Socioeconomic Semantic 2-SuperHyperGraph). Let the base set of key socioeconomic concepts
be

V = { Democracy, EconomicGrowth, Education, SocialMobility, IncomeInequality}.

Define the relation-label set

L = { promotes, mediates, reduces, increases },

and the directed edge set

E =
{

(Democracy, EconomicGrowth), (Education, SocialMobility),

(SocialMobility, IncomeInequality), (EconomicGrowth, IncomeInequality)
}

.

Assign labels by

ℓ :


(Democracy, EconomicGrowth) 7→ mediates,

(Education, SocialMobility) 7→ promotes,

(SocialMobility, IncomeInequality) 7→ reduces,

(EconomicGrowth, IncomeInequality) 7→ increases,
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and weights by

w :


(Democracy, EconomicGrowth) 7→ 0.70,

(Education, SocialMobility) 7→ 0.80,

(SocialMobility, IncomeInequality) 7→ 0.60,

(EconomicGrowth, IncomeInequality) 7→ 0.75.

Then G = (V, E, L, ℓ, w) is a Semantic Graph modeling these constructs.

Its induced Semantic HyperGraph
H = (V, EH , LH , ℓH , wH)

has hyperedges
EH =

{
{u, v} : (u, v) ∈ E

}
∪{

{EconomicGrowth, SocialMobility, IncomeInequality}
}

,

since IncomeInequality has two semantic predecessors. Here

LH = P(L) \ {∅},

ℓH(e) = {ℓ(u, v) : (u, v) ∈ E, {u, v} ⊆ e},

wH(e) = max
(u,v)∈E
{u,v}⊆e

w(u, v).

For n = 2, the Semantic 2-SuperHyperGraph is

SNHG(2) =
(
V2, E2, L2, ℓ2, w2

)
,

where
V2 = P2(V ),

E2 =
{

P(e) \ {∅} | e ∈ EH

}
,

L2 = P(LH) \ {∅},

ℓ2
(
P(e) \ {∅}

)
= ℓH(e),

w2
(
P(e) \ {∅}

)
= wH(e).

Two illustrative level-2 superedges are:

P
(
{Education, SocialMobility}

)
\ {∅}

=
{

{Education}, {SocialMobility}, {Education, SocialMobility}
}

,

with labels {promotes} and weight 0.80; and

P
(
{EconomicGrowth, SocialMobility, IncomeInequality}

)
\ {∅}

=
{

{EconomicGrowth}, {SocialMobility}, {IncomeInequality}, . . .
}

,

with labels {increases, reduces} and weight 0.75.

These superedges unpack each hyperedge into all nonempty subcollections, enabling hierarchical analysis of
complex concept associations in social-science contexts.

Theorem 3.11. For any Semantic HyperGraph H = (V, EH , LH , ℓH , wH) and integer n ≥ 1:

(1) SNHG(n) satisfies the definition of an n-SuperHyperGraph.

(2) SNHG(1) recovers H up to hypergraph isomorphism.
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Proof : (1) n-SuperHyperGraph structure. By construction,

Vn = Pn(V ), En ⊆ P(Vn) \ {∅}.

Hence SNHG(n) = (Vn, En, Ln, ℓn, wn) meets the axioms of an n-SuperHyperGraph.

(2) Generalization of H. When n = 1, P0(e) = e for each e ∈ EH . Therefore

V1 = P(V ), E1 = { e : e ∈ EH} = EH .

Moreover, ℓ1(e) = ℓH(e) and w1(e) = wH(e) for all e. The natural bijection ι : V → {{v} : v ∈ V } ⊂ V1 identifies
each original vertex v with its singleton {v}. Under ι, SNHG(1) is isomorphic to H. Thus SNHG(1) exactly
recovers and generalizes the Semantic HyperGraph. □

4| Conclusion and Future Work
In this paper, we have extended Behavior Graphs and Semantic Graphs using HyperGraphs and SuperHyper-
Graphs to produce hierarchical, multi-scale representations of cognitive and behavioral phenomena.

As future work, we plan to investigate further extensions by incorporating fuzzy and neutrosophic frameworks,
including Fuzzy Sets [43, 44, 45], HyperFuzzy Sets [46, 47], Picture Fuzzy Sets [48, 49], Hesitant Fuzzy Sets
[50, 51], Neutrosophic Sets [52, 53], and Plithogenic Sets [54, 55].
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