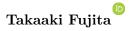
Psychology Nexus

www.nex.reapress.com

Psych.Nex. Vol. 2, No. 1 (2025) 23-40.

Paper Type: Original Article

A Hierarchical Hypergraph and Superhypergraph Framework for Semantic and Behavioral Graphs in Psychology and the Social Sciences



Independent Researcher, Tokyo, Japan; Takaaki.fujita060@gmail.com.

Citation:

Received: 25 September 2024 Revised: 12 November 2024 Accepted: 10 March 2025 Fujita, T. (2025). A hierarchical hypergraph and superhypergraph framework for semantic and behavioral graphs in psychology and the social sciences. *Psychology nexus*, 2(1), 23-40.

Abstract

Graph theory—modeling entities as vertices and their relationships as edges—has been applied across domains from anatomical networks (e.g. teeth) to social systems [1, 2]. In psychology and the social sciences, Behavior Graphs capture temporal sequences of actions or states, while Semantic Graphs represent conceptual associations underlying memory and cognition. Here, we extend both models using HyperGraphs and SuperHyperGraphs to create hierarchical, multi-scale representations. This framework enables nested modeling of cognitive and behavioral structures, offering a versatile approach for analyzing complex phenomena in psychological and social research.

Keywords: Superhypergraph, Hypergraph, Semantic Graph, Behavior graph.

1|Introduction

We fix notation and recall key definitions used throughout this paper. Unless otherwise stated, all graphs are finite. For comprehensive treatments, see the cited references.

Corresponding Author: Takaaki.fujita060@gmail.com

https://doi.org/10.48314/nex.vi.27

Licensee Psychology Nexus. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

1.1 Hypergraphs and SuperHyperGraphs

Graph theory models anatomical structures such as teeth and their spatial or functional relationships by representing each tooth as a vertex and each connection as an edge [1, 2]. A hypergraph extends this notion by allowing each hyperedge to connect any nonempty subset of vertices simultaneously [3, 4, 5]. HyperGraphs have been applied across various fields, including artificial intelligence and chemistry [6, 7, 8, 9, 10]. Building on this, a SuperHyperGraph employs iterative powerset constructions to build hierarchical layers of vertices and hyperedges, thereby capturing nested, multi-scale relationships [11, 12, 13, 14, 15]. Here, the integer $n \ge 0$ denotes the depth of powerset iteration.

Definition 1.1 (Graph). [16] A graph is an ordered pair G = (V, E) where

- V is a finite set of vertices,
- $E \subseteq V \times V$ is a set of unordered or ordered pairs of distinct vertices, called *edges*.

Example 1.2 (Social Network Graph). (cf.[17]) Let $V = \{Ayano, Jose, Taro, Ziro\}$ represent four individuals, and

$$E = \{\{Ayano, Jose\}, \{Jose, Taro\}, \{Taro, Ziro\}\}$$

represent mutual "friendship" ties. Then

$$G = (V, E)$$

is a graph modeling the social connections among these four people.

Definition 1.3 (Base Set). Let V_0 be a finite set, called the *base set*. All subsequent constructions are drawn from V_0 or its iterated powersets.

Definition 1.4 (Powerset). [18] For any set X, its powerset is

$$\mathcal{P}(X) \ = \ \big\{\, A \mid A \subseteq X \big\}.$$

Definition 1.5 (Hypergraph). [3, 4] A hypergraph is a pair H = (V, E) where

- V is a finite set of vertices,
- $E \subseteq \mathcal{P}(V) \setminus \{\emptyset\}$ is a finite family of nonempty subsets of V, called hyperedges.

Example 1.6 (Major Depressive Symptom Hypergraph). (cf.[19, 20]) Let V be the set of common symptoms of major depression:

 $V = \{ \text{Sadness}, \text{Anhedonia}, \text{Fatigue}, \text{Sleep Disturbance}, \}$

Appetite Change, Weight Loss, Concentration Impairment \}.

Define the hyperedge set

$$E = \{ \{ \text{Sadness, Anhedonia, Fatigue} \},$$

{Sleep Disturbance, Fatigue, Concentration Impairment}, {Appetite Change, Weight Loss}}.

Then

$$H = (V, E)$$

is a hypergraph modeling symptom clusters in major depression. Each hyperedge groups together symptoms that frequently co-occur, reflecting underlying latent dimensions such as mood, neurovegetative, and cognitive domains.

Definition 1.7 (*n*-th Powerset). [21, 22, 23] Define inductively for $k \ge 0$:

$$\mathcal{P}^0(V_0) = V_0, \qquad \mathcal{P}^{k+1}(V_0) = \mathcal{P}(\mathcal{P}^k(V_0)).$$

We write $\mathcal{P}_n(V_0)$ for $\mathcal{P}^n(V_0)$ and denote by $\mathcal{P}_n^*(V_0)$ its collection of nonempty subsets.

Example 1.8 (Second Powerset of Basic Emotions). Let the base set of primary emotions be

$$V_0 = \{ \text{Joy, Sadness, Fear, Anger} \}.$$

Then the first powerset is

$$\mathcal{P}^1(V_0) = \mathcal{P}(V_0) = \{ \{ \text{Joy} \}, \{ \text{Sadness} \}, \{ \text{Fear} \}, \{ \text{Anger} \}, \{ \text{Joy}, \text{Sadness} \}, \dots, \{ \text{Joy}, \text{Sadness}, \text{Fear}, \text{Anger} \} \}.$$

The second powerset is

$$\mathcal{P}^2(V_0) = \mathcal{P}(\mathcal{P}^1(V_0)),$$

whose elements are all nonempty collections of subsets of V_0 . For instance:

$$\{\{Joy\}, \{Sadness\}\}\$$
 and $\{\{Fear, Anger\}, \{Joy, Fear\}\}\$

are two representative members of $\mathcal{P}^2(V_0)$. Such higher-order collections can model cognitive groupings of emotion-clusters in hierarchical analyses.

Notation 1.9 (Iterated powerset). For a set X and $k \in \mathbb{N}_0$, define

$$\mathcal{P}^{0}(X) := X, \qquad \mathcal{P}^{k+1}(X) := \mathcal{P}(\mathcal{P}^{k}(X)).$$

We call the elements of $\mathcal{P}^{n}(X)$ the level-n objects over X.

Definition 1.10 (*n*-SuperHyperGraph). [24, 25, 26, 27] Let V_0 be a nonempty base set and $n \in \mathbb{N}$. An n-SuperHyperGraph is a pair

$$SuHyG^{(n)} = (V, E),$$

where the *n*-supervertex set V satisfies $V \subseteq \mathcal{P}^n(V_0)$, and the *n*-superedge set is a family of nonempty subsets of V:

$$E \subseteq \mathcal{P}(V) \setminus \{\emptyset\}.$$

Thus, each n-superedge $e \in E$ is a set whose elements are n-supervertices (i.e. elements of $V \subseteq \mathcal{P}^n(V_0)$).

Remark 1.11 (Why $E \subseteq \mathcal{P}(V)$ is the correct typing). In a (super)hypergraph, edges are collections of vertices. Since $V \subseteq \mathcal{P}^n(V_0)$ already fixes the type of *n*-supervertices, edges must live one powerset level above V, namely inside $\mathcal{P}(V)$. Writing $E \subseteq \mathcal{P}^n(V_0)$ would incorrectly type edges as vertices rather than sets of vertices.

Example 1.12 (Depressive Symptom 2-SuperHyperGraph). Let the base set of common major-depressive symptoms be

 $V_0 = \{ \text{Sadness}, \text{Anhedonia}, \text{Fatigue}, \text{Sleep Disturbance}, \text{Appetite Change}, \text{Concentration Impairment} \}.$

Define level-1 hyperedges (symptom clusters) by

$$E^{(1)} = \left\{ e_{\text{mood}} = \{ \text{Sadness}, \text{Anhedonia}, \text{Fatigue} \}, \right.$$

 $e_{\text{sleep}} = \{ \text{Sleep Disturbance}, \text{Fatigue}, \text{Concentration Impairment} \},$

$$e_{\text{somatic}} = \{\text{Appetite Change, Fatigue}\}$$
.

Set the level-2 supervertex set to be the full level-2 objects,

$$V_2 := \mathcal{P}^2(V_0) = \mathcal{P}(\mathcal{P}(V_0)),$$

and define the level-2 superedges by "lifting" each level-1 edge to all of its nonempty subcollections:

$$E_2 := \left\{ \mathcal{P}(e) \setminus \{\emptyset\} \mid e \in E^{(1)} \right\} \subseteq \mathcal{P}(V_2).$$

Two representative level-2 superedges are

$$\mathcal{P}(e_{\text{mood}}) \setminus \{\emptyset\} = \big\{\{\text{Sadness}\}, \{\text{Anhedonia}\}, \dots, \{\text{Sadness}, \text{Anhedonia}, \text{Fatigue}\}\big\},$$

$$\mathcal{P}(e_{\text{sleep}}) \setminus \{\emptyset\} = \{\{\text{Sleep Disturbance}\}, \{\text{Fatigue}\}, \dots, \}$$

{Sleep Disturbance, Fatigue, Concentration Impairment}}.

Each displayed superedge is a subset of V_2 ; hence $E_2 \subseteq \mathcal{P}(V_2)$ as required.

Example 1.13 (Cognitive Function 3-SuperHyperGraph). Let the base set of core cognitive domains be $V_0 = \{\text{Memory}, \text{Attention}, \text{ExecutiveFunction}\}.$

Define two level-1 hyperedges

$$e_1 = \{\text{Memory}, \text{Attention}\}, \qquad e_2 = \{\text{Attention}, \text{ExecutiveFunction}\}.$$

Form their level-2 lifts

$$\mathcal{P}(e_1) \setminus \{\emptyset\} = \{\{\text{Memory}\}, \{\text{Attention}\}, \{\text{Memory}, \text{Attention}\}\},\$$

and analogously for e_2 . For n=3, take

$$V_3 := \mathcal{P}^3(V_0), \qquad E_3 := \{ \mathcal{P}^2(e) \setminus \{\emptyset\} \mid e \in \{e_1, e_2\} \} \subseteq \mathcal{P}(V_3),$$

where $\mathcal{P}^{\,2}(e) = \mathcal{P}\big(\mathcal{P}(e)\big).$ Two representative level-3 superedges are

$$\mathcal{P}^2(e_1) \setminus \{\emptyset\} = \{\{\{\text{Memory}\}, \{\text{Attention}\}\}, \{\{\text{Memory}, \text{Attention}\}\}, \ldots\},$$

 $\mathcal{P}^{2}(e_{2})\setminus\{\emptyset\}=\{\{\{\text{Attention}\},\{\text{ExecutiveFunction}\}\},\{\{\text{Attention},\text{ExecutiveFunction}\}\},\ldots\}.$

Thus $E_3 \subseteq \mathcal{P}(V_3)$, i.e. every level-3 superedge is a set of level-3 supervertices.

2 Behavior Graph and Their Extensions

A Behavior Graph represents observed actions or states as nodes, with edges indicating transitions or sequences between behaviors over time (cf.[28, 29, 30, 31, 32]). In this section, we explore their extensions using HyperGraphs and SuperHyperGraphs.

Definition 2.1 (Behavior Graph). A Behavior Graph in the social sciences is a directed, weighted graph

$$G = (V, E, f, p),$$

where

- V is a finite set of behavioral states (e.g. actions or observed events),
- $E \subseteq V \times V$ is the set of transitions between states,
- $f: E \to \mathbb{N}$ assigns each transition $(u, v) \in E$ a frequency of occurrence,
- $p: E \to [0,1]$ assigns each transition $(u,v) \in E$ a probability or normalized weight, with

$$p(u,v) = \frac{f(u,v)}{\sum_{w:(u,w)\in E} f(u,w)}.$$

Example 2.2 (Smartphone Usage Behavior Graph). Let

$$V = \{ \text{UnlockPhone}, \text{ViewNotifications}, \text{OpenApp}, \}$$

SendMessage, LockPhone},

and

$$E = \{ \text{(UnlockPhone, ViewNotifications)}, \text{(UnlockPhone, OpenApp)}, (ViewNotifications, OpenApp)}, (ViewNotifications, LockPhone)},$$

(OpenApp, SendMessage), (OpenApp, LockPhone), (SendMessage, LockPhone).

Define the frequency function $f: E \to \mathbb{N}$ by

$$f(\text{UnlockPhone, ViewNotifications}) = 120,$$
 $f(\text{UnlockPhone, OpenApp}) = 80,$ $f(\text{ViewNotifications, OpenApp}) = 100,$ $f(\text{ViewNotifications, LockPhone}) = 20,$ $f(\text{OpenApp, SendMessage}) = 50,$ $f(\text{OpenApp, LockPhone}) = 30,$ $f(\text{SendMessage, LockPhone}) = 50.$

The transition probability function $p: E \to [0,1]$ is then

$$p(u,v) = \frac{f(u,v)}{\sum_{w \cdot (u,w) \in E} f(u,w)}.$$

For example,

$$p(\text{UnlockPhone, ViewNotifications}) = \frac{120}{120 + 80} = 0.60,$$

$$p(\text{OpenApp, SendMessage}) = \frac{50}{50 + 30} = 0.625.$$

Hence

$$G = (V, E, f, p)$$

is a Behavior Graph modeling typical transitions users perform during a smartphone session.

Example 2.3 (E-Commerce Session Behavior Graph). An E-Commerce Session is a continuous sequence of user interactions with an online store, typically ending with inactivity or checkout (cf.[33, 34]). Let

$$V = \{ ViewProduct, AddToCart, \}$$

RemoveFromCart, Checkout, Exit},

and

 $E = \{ \text{(ViewProduct, AddToCart), (ViewProduct, Exit), (AddToCart, Checkout), (AddToCart, RemoveFromCart),} \\ (\text{RemoveFromCart, AddToCart), (RemoveFromCart, Exit), (Checkout, Exit)} \}.$

Define the frequency function $f: E \to \mathbb{N}$ by

$$f(\mbox{ViewProduct},\mbox{AddToCart}) = 40, \qquad f(\mbox{ViewProduct},\mbox{Exit}) = 160, \\ f(\mbox{AddToCart},\mbox{Checkout}) = 25, \qquad f(\mbox{AddToCart},\mbox{RemoveFromCart}) = 15, \\ f(\mbox{RemoveFromCart},\mbox{AddToCart}) = 5, \qquad f(\mbox{RemoveFromCart},\mbox{Exit}) = 15, \\ f(\mbox{Checkout},\mbox{Exit}) = 25.$$

The transition probability function $p: E \to [0, 1]$ is then

$$p(u,v) = \frac{f(u,v)}{\sum_{w:(u,w)\in E} f(u,w)}.$$

For instance,

$$p(\text{ViewProduct}, \text{AddToCart}) = \frac{40}{40 + 160} = 0.20, \quad p(\text{AddToCart}, \text{Checkout}) = \frac{25}{25 + 15} = 0.625.$$

Hence

$$G = (V, E, f, p)$$

is a Behavior Graph modeling typical user transitions during an online shopping session.

A Behavior HyperGraph models behavioral states as vertices, hyperedges grouping co-occurring states or joint transitions, with weights aggregating transition frequencies. A Behavior SuperHyperGraph hierarchically lifts a Behavior HyperGraph via iterated powersets, forming level-n vertices and superedges from hyperedge subcollections systematically. We state these definitions below.

Definition 2.4 (Behavior HyperGraph). Let $G = (V, E_G, f, p)$ be a Behavior Graph. A Behavior HyperGraph is a tuple

$$H = (V, E_H, F, P),$$

where

- V is the same finite set of behavioral states as in G,
- $E_H \subseteq \mathcal{P}(V) \setminus \{\emptyset\}$ is a family of nonempty subsets of V, called *hyperedges*, each representing a frequently co-occurring set of states,

- $F: E_H \to \mathbb{N}$ assigns each hyperedge e its aggregate frequency $F(e) = \sum_{(u,v) \in e \times e, \ u \neq v} f(u,v)$,
- $P: E_H \to [0,1]$ assigns each e a normalized weight $P(e) = \frac{F(e)}{\max_{e' \in E_H} F(e')}$.

Example 2.5 (Workplace Communication Behavior HyperGraph). Consider the set of behavioral states for workplace communication:

$$V = \{ \text{Email}, \text{Chat}, \text{Meeting}, \text{DocumentShare} \}.$$

Suppose the Behavior Graph $G = (V, E_G, f, p)$ records the following transition frequencies f(u, v):

f(u,v)	Email	Chat	Meeting	DocumentShare
Email	Ü	30	15	0
Chat	20	U	12	25
Meeting	10	7	U	5
DocumentShare	0	20	8	J

All other f(u, v) not listed are zero.

The induced Behavior HyperGraph $H = (V, E_H, F, P)$ uses:

$$E_H = \{\{u, v\} : (u, v) \in E_G\} \cup \{\{c\} \cup N_c^{\text{out}} : |N_c^{\text{out}}| \ge 2\},\$$

where $N_c^{\text{out}} = \{ v : (c, v) \in E_G \}$. Concretely,

$$E_{H} = \{ \{ \text{Email}, \text{Chat} \}, \{ \text{Email}, \text{Meeting} \}, \{ \text{Chat}, \text{Meeting} \}, \{ \text{Chat}, \text{DocumentShare} \}, \\ \{ \text{Email}, \text{Chat}, \text{Meeting} \}, \{ \text{Chat}, \text{Email}, \text{DocumentShare} \},$$

{Meeting, Email, DocumentShare}, {DocumentShare, Chat, Meeting}}.

The aggregate frequency F on each hyperedge e is

$$F(e) = \sum_{\substack{(u,v) \in E_G \\ u,v \in e}} f(u,v),$$

and the normalized weight is

$$P(e) = \frac{F(e)}{\max_{e' \in E_H} F(e')}.$$

A few values are:

$$F\left(\{\text{Email}, \text{Chat}\}\right) = 30 + 20 = 50 \\ F\left(\{\text{Chat}, \text{DocumentShare}\}\right) = 25 + 20 = 45 \\ F\left(\{\text{Chat}, \text{DocumentShare}\}\right) = 30 + 20 + 15 + 10 + 12 + 7 = \\ P\left(\{\text{Email}, \text{Chat}, \text{Meeting}\}\right) = \frac{45}{95} \approx 0.526 \\ P\left(\{\text{Chat}, \text{DocumentShare}\}\right) = \frac{45}{95} \approx 0.474 \\ P\left(\{\text{Email}, \text{Chat}, \text{Meeting}\}\right) = \frac{94}{95} \approx 0.989 \\ 94 \\ F\left(\{\text{Chat}, \text{Email}, \text{DocumentShare}\}\right) = 20 + 30 + 25 + \\ P\left(\{\text{Chat}, \text{Email}, \text{DocumentShare}\}\right) = 1.00 \\ 20 = 95$$

Thus

$$H = (V, E_H, F, P)$$

is a Behavior HyperGraph capturing both pairwise and multi-state co-occurrence patterns in workplace communication behavior.

Example 2.6 (Emotion Regulation Behavior HyperGraph). Consider the set of emotion-regulation states from Gross's process model:

 $V = \{ \mbox{SituationSelection, SituationModification, AttentionalDeployment,} \\ \mbox{CognitiveChange, ResponseModulation} \}.$

Suppose observational data yields the following transition frequencies $f: V \times V \to \mathbb{N}$:

f(u, v)	SitSel	SitMod	AttDep	CogCh	RespMod
SitSel	Ü	10	0	0	0
SitMod	0	U	12	0	0
AttDep	0	0	V	15	0
CogCh	0	7	0	V	8
RespMod	0	0	5	0	J

All other f(u,v) = 0. The transition-probabilities $p(u,v) = f(u,v) / \sum_{w} f(u,w)$ then define the Behavior Graph

$$G = (V, E_G, f, p).$$

Its induced Behavior HyperGraph

$$H = (V, E_H, F, P)$$

has hyperedges

 $E_H = \{\{u, v\} : (u, v) \in E_G\} \cup \{\{\text{CogCh}, \text{RespMod}, \text{AttDep}\}\} \cup \{\{\text{AttDep}, \text{SitMod}, \text{CogCh}, \text{RespMod}\}\}.$

Here

$$F(e) = \sum_{\substack{(u,v) \in E_G \\ u,v \in e}} f(u,v), \qquad P(e) = \frac{F(e)}{\max_{e' \in E_H} F(e')}.$$

A few values are:

$$F\big(\{\text{SitMod}, \text{AttDep}\}\big) = 12 \qquad P\big(\{\text{SitMod}, \text{AttDep}\}\big) = \frac{12}{47} \approx 0.255$$

$$F\big(\{\text{CogCh}, \text{RespMod}, \text{AttDep}\}\big) = 8 + 7 + 15 + 5 = 35 \qquad P\big(\{\text{CogCh}, \text{RespMod}, \text{AttDep}\}\big) = \frac{35}{47} \approx 0.745$$

$$F\big(\{\text{AttDep}, \text{SitMod}, \text{CogCh}, \text{RespMod}\}\big) = 12 + 15 + \qquad P\big(\{\text{AttDep}, \text{SitMod}, \text{CogCh}, \text{RespMod}\}\big) = 1.00$$

$$7 + 8 + 5 = 47$$

Thus

$$H = (V, E_H, F, P)$$

is a Behavior HyperGraph capturing both pairwise transitions and multi-state co-occurrence patterns in emotion-regulation behavior.

Theorem 2.7. Every Behavior Graph $G = (V, E_G, f, p)$ admits a natural Behavior HyperGraph $H = (V, E_H, F, P)$, and the 2-section (clique-expansion) of H recovers G.

Proof: Define

$$E_H = \{ e \subseteq V : |e| \ge 2 \text{ and } \exists (u, v) \in E_G, u, v \in e \}.$$

Each e groups together states that co-occur in at least one transition of G. By construction $E_H \subseteq \mathcal{P}(V) \setminus \{\emptyset\}$.

For each $e \in E_H$, let

$$F(e) = \sum_{\substack{(u,v) \in E_G \\ v,v \in e}} f(u,v), \qquad P(e) = \frac{F(e)}{\max_{e' \in E_H} F(e')}.$$

Form the 2-section (clique-expansion) graph $\Gamma(H) = (V, E')$ by

$$E' = \{\{u, v\} \subseteq V : \exists e \in E_H, \{u, v\} \subseteq e\}.$$

If $(u, v) \in E_G$, then $\{u, v\} \subseteq e$ for $e = \{u, v\} \in E_H$, so $\{u, v\} \in E'$. Conversely, any $\{u, v\} \in E'$ arises from some $e \in E_H$, and thus $(u, v) \in E_G$ or $(v, u) \in E_G$. Hence $\Gamma(H)$ coincides with the undirected support of G.

Theorem 2.8. Every Behavior HyperGraph $H = (V, E_H, F, P)$ is a hypergraph in the sense of Definition 1.5.

Proof: By definition $E_H \subseteq \mathcal{P}(V) \setminus \{\emptyset\}$. Therefore H satisfies the hypergraph axioms immediately. \square

Definition 2.9 (Behavior *n*-SuperHyperGraph). Let

$$G = (V, E_G, f, p)$$

be a Behavior Graph and let

$$H = (V, E_H, F, P)$$

be its induced Behavior HyperGraph. For any integer $n \ge 1$, the Behavior n-SuperHyperGraph is defined as the tuple

$$BHG^{(n)} = (V_n, E_n, F^{(n)}, P^{(n)}),$$

where

$$V_n = \mathcal{P}^n(V), \qquad E_n = \{ \mathcal{P}^{n-1}(e) \setminus \{\emptyset\} \mid e \in E_H \},$$

and the label functions are propagated by

$$F^{(n)}\big(\mathcal{P}^{n-1}(e)\setminus\{\emptyset\}\big)=F(e),\quad P^{(n)}\big(\mathcal{P}^{n-1}(e)\setminus\{\emptyset\}\big)=P(e).$$

Example 2.10 (Emotion Regulation 2-SuperHyperGraph). Let the Behavior Graph $G = (V, E_G, f, p)$ and its induced Behavior HyperGraph

$$H = (V, E_H, F, P)$$

be as in Example 2.6, where

$$V = \{ \text{SitSel, SitMod, AttDep, CogCh, RespMod} \},$$

and

$$E_{H} = \{ \{ \text{SitMod}, \text{AttDep} \}, \{ \text{AttDep}, \text{CogCh}, \text{RespMod} \}, \\ \{ \text{SitMod}, \text{AttDep}, \text{CogCh}, \text{RespMod} \} \},$$

with aggregate frequencies

$$F(\{\text{SitMod}, \text{AttDep}\}) = 12,$$

$$F(\{AttDep, CogCh, RespMod\}) = 15 + 8 + 5 = 28,$$

$$F(\{\text{SitMod}, \text{AttDep}, \text{CogCh}, \text{RespMod}\}) = 12 + 15 + 8 + 5 + 7 = 47,$$

and normalized weights P(e) = F(e)/47.

For n = 2, the Behavior 2-SuperHyperGraph is

$$BHG^{(2)} = (V_2, E_2, F^{(2)}, P^{(2)}),$$

where

$$V_2 = \mathcal{P}^2(V),$$

$$E_2 = \{\mathcal{P}(e) \setminus \{\emptyset\} : e \in E_H\},$$

and for each hyperedge $e \in E_H$,

$$F^{(2)}\big(\mathcal{P}(e)\setminus\{\emptyset\}\big)=F(e),\quad P^{(2)}\big(\mathcal{P}(e)\setminus\{\emptyset\}\big)=P(e).$$

Two representative level-2 superedges are:

 $\bullet \ Pair \ superedge \ at \ Situation Modification-Attentional Deployment:$

$$\mathcal{P}\big(\{\mathrm{SitMod},\mathrm{AttDep}\}\big)\setminus\{\emptyset\}=\{\{\mathrm{SitMod}\},\{\mathrm{AttDep}\},\{\mathrm{SitMod},\mathrm{AttDep}\}\},$$
 carrying $F^{(2)}=12$ and $P^{(2)}=12/47\approx0.255.$

• Junction superedge at the triple cluster {AttDep, CogCh, RespMod}:

$$\mathcal{P}(\{AttDep, CogCh, RespMod\}) \setminus \{\emptyset\}$$

$$\{ \text{AttDep}, \{ \text{CogCh} \}, \{ \text{RespMod} \}, \{ \text{AttDep}, \text{CogCh} \}, \{ \text{AttDep}, \text{RespMod} \}, \{ \text{CogCh}, \text{RespMod} \}, \\ \{ \text{AttDep}, \text{CogCh}, \text{RespMod} \} \}, \\ \text{carrying } F^{(2)} = 28 \text{ and } P^{(2)} = 28/47 \approx 0.596.$$

These level-2 superedges unpack each hyperedge into all its nonempty subcollections, enabling hierarchical analysis of emotion-regulation sequences at multiple scales.

Example 2.11 (Online Learning Behavior 2-SuperHyperGraph). Consider the set of behavioral states in an online course:

 $V = \{ VideoLecture, Quiz, ForumDiscussion, AssignmentSubmission, PeerReview \}.$

From learning-management-system logs, we observe the following transition frequencies $f: V \times V \to \mathbb{N}$:

f(u,v)	VideoLecture	Quiz	ForumDiscussion	AssignmentSubmission	PeerReview
VideoLecture	J	50	20	10	0
Quiz	40	U	15	25	5
ForumDiscussion	10	5	U	30	15
AssignmentSubmission	0	10	20	U	25
PeerReview	0	5	10	30	U

All other f(u, v) are zero. The induced Behavior HyperGraph

$$H = (V, E_H, F, P)$$

has hyperedges

$$E_H = \{\{u, v\} : (u, v) \in E_G\}$$

 $\cup \ \{ \{ VideoLecture, Quiz, ForumDiscussion \} \} \cup \{ \{ Quiz, ForumDiscussion, AssignmentSubmission \} \}$

 \cup {{ForumDiscussion, AssignmentSubmission, PeerReview}},

grouping states with two or more common transitions. The aggregate frequency and normalized weight are

$$F(e) = \sum_{\substack{(u,v) \in E_G \\ u,v \in e}} f(u,v), \quad P(e) = \frac{F(e)}{\max_{e' \in E_H} F(e')}.$$

For instance,

$$F(\{\text{VideoLecture}, \text{Quiz}\}) = 50 + 40 = 90, \quad P(\{\text{VideoLecture}, \text{Quiz}\}) = \frac{90}{185} \approx 0.486,$$

 $F(\{\text{VideoLecture}, \text{Quiz}, \text{ForumDiscussion}\}) = 50 + 40 + 20 + 15 + 5 + 10 = 140, \quad P = 140/185 \approx 0.757.$

Hence the Behavior 2-SuperHyperGraph

$$BHG^{(2)} = (V_2, E_2, F^{(2)}, P^{(2)}),$$

with

$$V_2 = \mathcal{P}^2(V),$$

$$E_2 = \{\mathcal{P}(e) \setminus \{\emptyset\} : e \in E_H\},$$

and $F^{(2)}(\mathcal{P}(e) \setminus \{\emptyset\}) = F(e)$, $P^{(2)}(\mathcal{P}(e) \setminus \{\emptyset\}) = P(e)$, unpacks each hyperedge into its nonempty subcollections. This hierarchical model enables multi-scale analysis of student activity patterns in online learning.

Theorem 2.12. For any Behavior HyperGraph $H = (V, E_H, F, P)$ and integer $n \ge 1$:

- (1) $BHG^{(n)}$ is an n-SuperHyperGraph.
- (2) $BHG^{(1)}$ recovers H exactly, i.e. it generalizes the Behavior HyperGraph.

Proof: (1) n-SuperHyperGraph structure. By construction

$$V_n = \mathcal{P}^n(V), \qquad E_n \subseteq \mathcal{P}(V_n) \setminus \{\emptyset\}.$$

Hence $BHG^{(n)} = (V_n, E_n, F^{(n)}, P^{(n)})$ satisfies the definition of an n-SuperHyperGraph.

(2) Generalization of H. When n=1, note $\mathcal{P}^0(e)=e$ for each $e\in E_H$. Therefore

$$V_1 = \mathcal{P}(V), \qquad E_1 = \{ e \mid e \in E_H \} = E_H.$$

Moreover, for each $e \in E_H$,

$$F^{(1)}(e) = F(e), \quad P^{(1)}(e) = P(e).$$

There is a natural bijection $\iota: V \to \{\{v\}: v \in V\} \subset V_1$, identifying each original state v with its singleton $\{v\}$. Under this identification, BHG⁽¹⁾ is isomorphic to H. Thus BHG⁽¹⁾ recovers and generalizes the Behavior HyperGraph.

3 Semantic Graph and Their Extensions

A Semantic Graph models concepts as nodes and meaning-based associations as edges, capturing the structure of mental organization and processes such as memory retrieval (cf. [35, 36, 37, 38, 39]). Semantic graphs are utilized not only in psychology but also in the fields of social science and artificial intelligence (cf. [40, 41, 42]). In this section, we explore their extensions using HyperGraphs and SuperHyperGraphs.

Definition 3.1 (Semantic Graph). A Semantic Graph is a directed, labeled, and weighted graph

$$G = (V, E, L, \ell, w),$$

where

- V is a finite set of concepts or terms,
- $E \subseteq V \times V$ is the set of directed *edges* representing semantic relations,
- L is a finite set of relation labels (e.g. is_a, part_of, associated_with),
- $\ell: E \to L$ is a labeling function that assigns to each edge its semantic relation type,
- $w: E \to [0,1]$ is a weight function that assigns to each edge a nonnegative real value reflecting the strength or confidence of the relation.

Example 3.2 (Mental Health Symptom Semantic Graph). Let

```
V = \{ \text{Stress, Anxiety, Depression, Coping, SocialSupport} \},
L = \{ \text{triggers, contributes\_to, enhances, mitigates} \},
```

and define the directed edge set

 $E = \big\{\,(\mathsf{Stress}, \mathsf{Anxiety}), \,\,(\mathsf{Anxiety}, \mathsf{Depression}), \,\,(\mathsf{SocialSupport}, \mathsf{Coping}), \,\,(\mathsf{Coping}, \mathsf{Depression})\big\}.$

Assign relation labels by

$$\ell: \begin{cases} (Stress, Anxiety) \mapsto \texttt{triggers}, \\ (Anxiety, Depression) \mapsto \texttt{contributes_to}, \\ (SocialSupport, Coping) \mapsto \texttt{enhances}, \\ (Coping, Depression) \mapsto \texttt{mitigates}, \end{cases}$$

and weights

$$w: \begin{cases} (\text{Stress, Anxiety}) \mapsto 0.85, \\ (\text{Anxiety, Depression}) \mapsto 0.75, \\ (\text{SocialSupport, Coping}) \mapsto 0.80, \\ (\text{Coping, Depression}) \mapsto 0.65. \end{cases}$$

Then

$$G = (V, E, L, \ell, w)$$

is a Semantic Graph modeling key associations among mental health constructs in social-science research.

Example 3.3 (Intergroup Relations Semantic Graph). Let

```
V = \{ \text{SocialIdentity, SelfEsteem, GroupCohesion, IntergroupConflict} \}, L = \{ \text{ influences, mediates, moderates } \},
```

and

 $E = \{ (Social Identity, Self Esteem), (Self Esteem, Group Cohesion), (Group Cohesion, Intergroup Conflict), \}$

(SocialIdentity, GroupCohesion), (SelfEsteem, IntergroupConflict).

Define the labeling function $\ell: E \to L$ by

$$\ell: \begin{cases} (\text{SocialIdentity}, \text{SelfEsteem}) \mapsto \texttt{influences}, \\ (\text{SelfEsteem}, \text{GroupCohesion}) \mapsto \texttt{mediates}, \\ (\text{GroupCohesion}, \text{IntergroupConflict}) \mapsto \texttt{influences}, \\ (\text{SocialIdentity}, \text{GroupCohesion}) \mapsto \texttt{moderates}, \\ (\text{SelfEsteem}, \text{IntergroupConflict}) \mapsto \texttt{mediates}, \end{cases}$$

and the weight function $w: E \to [0,1]$ by

$$w: \begin{cases} (\text{SocialIdentity}, \text{SelfEsteem}) \mapsto 0.85, \\ (\text{SelfEsteem}, \text{GroupCohesion}) \mapsto 0.75, \\ (\text{GroupCohesion}, \text{IntergroupConflict}) \mapsto 0.65, \\ (\text{SocialIdentity}, \text{GroupCohesion}) \mapsto 0.70, \\ (\text{SelfEsteem}, \text{IntergroupConflict}) \mapsto 0.60. \end{cases}$$

Then

$$G = (V, E, L, \ell, w)$$

is a Semantic Graph modeling core associations among constructs in intergroup relations research.

A Semantic HyperGraph represents concepts as vertices, linking multiple related concepts via hyperedges to capture contextual meaning. A Semantic SuperHyperGraph extends semantic hypergraphs, forming higher-order supervertices and superedges through iterated powersets for hierarchical semantic representation. In this section, we explore their extensions using HyperGraphs and SuperHyperGraphs.

Definition 3.4 (Semantic HyperGraph). Let

$$G = (V, E, L, \ell, w)$$

be a Semantic Graph. Its $Semantic\ HyperGraph$ is the tuple

$$H = (V, E_H, L_H, \ell_H, w_H),$$

where

$$E_{H} = \{\{u, v\} : (u, v) \in E\} \cup \{\{c\} \cup N_{c}^{\text{out}} : |N_{c}^{\text{out}}| \ge 2\}$$
$$\cup \{\{c\} \cup N_{c}^{\text{in}} : |N_{c}^{\text{in}}| \ge 2\},$$

with

$$N_c^{\text{out}} = \{ v : (c, v) \in E \}, \qquad N_c^{\text{in}} = \{ u : (u, c) \in E \}.$$

The hyperedge label set is

$$L_{II} = \mathcal{P}(L) \setminus \{\emptyset\}$$

and the labeling function $\ell_H: E_H \to L_H$ is

$$\ell_H(e) = \{ \ell(u, v) : (u, v) \in E, \{u, v\} \subseteq e \}.$$

The weight function $w_H: E_H \to [0,1]$ is

$$w_H(e) = \max_{\substack{(u,v) \in E \\ \{u,v\} \subseteq e}} w(u,v).$$

Example 3.5 (Socio-Political Semantic HyperGraph). Let the underlying Semantic Graph $G = (V, E, L, \ell, w)$ be defined by

 $V = \{ Social Capital, Trust, Media Influence, \}$

Political Participation, Social Cohesion, Economic Inequality,

relation labels

$$L = \{ \text{ influences, mediates, increases, reduces} \ \},$$

and directed edges

$$E = \{ (Social Capital, Political Participation), \}$$

(Trust, Political Participation), (Media Influence, Political Participation), (Social Capital, Social Cohesion), (Economic Inequality, Social Cohesion).

Assign labels by

$$\ell: \begin{cases} (\text{SocialCapital}, \text{PoliticalParticipation}) \mapsto \text{influences}, \\ (\text{Trust}, \text{PoliticalParticipation}) \mapsto \text{mediates}, \\ (\text{MediaInfluence}, \text{PoliticalParticipation}) \mapsto \text{influences}, \\ (\text{SocialCapital}, \text{SocialCohesion}) \mapsto \text{increases}, \\ (\text{EconomicInequality}, \text{SocialCohesion}) \mapsto \text{reduces}, \end{cases}$$

and weights by

$$w: \begin{cases} (\text{SocialCapital}, \text{PoliticalParticipation}) \mapsto 0.75, \\ (\text{Trust}, \text{PoliticalParticipation}) \mapsto 0.65, \\ (\text{MediaInfluence}, \text{PoliticalParticipation}) \mapsto 0.80, \\ (\text{SocialCapital}, \text{SocialCohesion}) \mapsto 0.70, \\ (\text{EconomicInequality}, \text{SocialCohesion}) \mapsto 0.60. \end{cases}$$

Then the induced Semantic HyperGraph

$$H = (V, E_H, L_H, \ell_H, w_H)$$

has hyperedges

$$\begin{split} E_H &= \{\{u,v\}: (u,v) \in E\} \\ &\quad \cup \ \{\{\text{SocialCapital}, \text{PoliticalParticipation}, \text{SocialCohesion}\}\} \\ &\quad \cup \ \{\{\text{SocialCapital}, \text{Trust}, \text{MediaInfluence}, \text{PoliticalParticipation}\}\} \\ &\quad \cup \ \{\{\text{SocialCapital}, \text{EconomicInequality}, \text{SocialCohesion}\}\}. \end{split}$$

The hyperedge label set is

$$L_H = \mathcal{P}(L) \setminus \{\emptyset\},\$$

and for each $e \in E_H$,

$$\begin{split} \ell_H(e) &= \{\ell(u,v) \mid (u,v) \in E, \ \{u,v\} \subseteq e\}, \\ w_H(e) &= \max\{w(u,v) \mid (u,v) \in E, \ \{u,v\} \subseteq e\}. \end{split}$$

Hence, for example,

 $\ell_H(\{ \text{SocialCapital}, \text{PoliticalParticipation}, \text{SocialCohesion} \}) = \{ \text{influences}, \text{increases} \},$ $w_H(\{ \text{SocialCapital}, \text{PoliticalParticipation}, \text{SocialCohesion} \}) = 0.75,$

and

$$\begin{split} \ell_H(\{\text{SocialCapital}, \text{Trust}, \text{MediaInfluence}, \text{PoliticalParticipation}\}) \\ &= \{\text{influences}, \text{mediates}\}, \end{split}$$

$$w_H(\{\text{SocialCapital}, \text{Trust}, \text{MediaInfluence}, \text{PoliticalParticipation}\}) = 0.80.$$

This Semantic HyperGraph captures both pairwise and multi-concept associations in socio-political cognition.

Example 3.6 (Mental Health Symptom Semantic HyperGraph). Let the underlying Semantic Graph $G = (V, E, L, \ell, w)$ be as in Example 3.2, with

$$V = \{ \text{Stress, Anxiety, Depression, Coping, SocialSupport} \},$$

relation labels

$$L = \{ \text{ triggers, contributes to, enhances, mitigates } \},$$

and directed edges

$$E = \{ (Stress, Anxiety), (Anxiety, Depression), (SocialSupport, Coping), (Coping, Depression) \}.$$

Then the Semantic HyperGraph

$$H = (V, E_H, L_H, \ell_H, w_H)$$

is defined by

$$E_H = \{\{u, v\} : (u, v) \in E\} \cup \{\{\text{Depression}, \text{Anxiety}, \text{Coping}\}\},\$$

since Depression has two distinct semantic predecessors Anxiety and Coping. The hyperedge label set is

$$L_H = \mathcal{P}(L) \setminus \{\emptyset\},\$$

and for each $e \in E_H$ we set

$$\ell_H(e) = \{ \ell(u, v) : (u, v) \in E, \{u, v\} \subseteq e \},$$

$$w_H(e) = \max_{\substack{(u, v) \in E \\ \{u, v\} \subseteq e}} w(u, v).$$

Hence:

Hyperedge	Labels	Weight
{Stress, Anxiety}	{triggers}	0.85
$\{Anxiety, Depression\}$	$\{{\tt contributes_to}\}$	0.75
$\{Social Support, Coping\}$	$\{ exttt{enhances}\}$	0.80
{Coping, Depression}	$\{ exttt{mitigates} \}$	0.65
$\{Depression, Anxiety, Coping\}$	$\{{\tt contributes_to}, {\tt mitigates}\}$	0.75

This Semantic HyperGraph H groups co-occurring concepts and identifies the junction hyperedge at Depression, capturing multi-concept associations in mental-health cognition.

Theorem 3.7. The Semantic HyperGraph $H = (V, E_H, L_H, \ell_H, w_H)$ is a hypergraph, and its 2-section (clique-expansion) $\Gamma(H)$ recovers the undirected support of the original Semantic Graph G.

Proof: First, by construction $E_H \subseteq \mathcal{P}(V) \setminus \{\emptyset\}$, so H satisfies the definition of a hypergraph.

Next, form the 2-section graph $\Gamma(H) = (V, E')$ where

$$E' = \{\{u, v\} \subseteq V : \exists e \in E_H, \{u, v\} \subseteq e\}.$$

If $(u,v) \in E$, then $\{u,v\} \in E_H$ by definition, so $\{u,v\} \in E'$. Conversely, if $\{u,v\} \in E'$, there exists $e \in E_H$ with $\{u,v\} \subseteq e$. If $e = \{u,v\}$, then $(u,v) \in E$ or $(v,u) \in E$. Otherwise $e = \{c\} \cup N$ for some c, and $\{u,v\} \subseteq e$ implies one of u,v equals c and the other lies in N, so again $(u,v) \in E$ or $(v,u) \in E$. Thus E' coincides with the set of unordered pairs arising from edges of G, i.e. the undirected support of G.

Definition 3.8 (Semantic *n*-SuperHyperGraph). Let

$$G = (V, E, L, \ell, w)$$

be a Semantic Graph, and let

$$H = (V, E_H, L_H, \ell_H, w_H)$$

be its induced Semantic HyperGraph. For any integer $n \geq 1$, the Semantic n-SuperHyperGraph is the tuple

$$SNHG^{(n)} = (V_n, E_n, L_n, \ell_n, w_n),$$

where

$$V_n = \mathcal{P}^n(V),$$

$$E_n = \left\{ \mathcal{P}^{n-1}(e) \setminus \{\emptyset\} \mid e \in E_H \right\},$$

$$L_n = \mathcal{P}(L_H) \setminus \{\emptyset\},$$

$$\ell_n(\mathcal{P}^{n-1}(e) \setminus \{\emptyset\}) = \ell_H(e),$$

$$w_n(\mathcal{P}^{n-1}(e) \setminus \{\emptyset\}) = w_H(e).$$

Example 3.9 (Mental Health Symptom Semantic 2-SuperHyperGraph). Let the underlying Semantic Graph $G = (V, E, L, \ell, w)$ be as in Example 3.2, where

$$V = \{ \text{Stress, Anxiety, Depression, Coping, SocialSupport} \},$$

and the induced Semantic HyperGraph

$$H = (V, E_H, L_H, \ell_H, w_H)$$

has hyperedges

$$E_H = \{ \{ \text{Stress}, \text{Anxiety} \}, \{ \text{Anxiety}, \text{Depression} \}, \{ \text{SocialSupport}, \text{Coping} \}, \{ \text{Coping}, \text{Depression} \}, \{ \text{Anxiety}, \text{Depression}, \text{Coping} \} \}.$$

Then the Semantic 2-SuperHyperGraph SNHG⁽²⁾ = $(V_2, E_2, L_2, \ell_2, w_2)$ is defined by

$$V_{2} = \mathcal{P}^{2}(V),$$

$$E_{2} = \{ \mathcal{P}(e) \setminus \{\emptyset\} \mid e \in E_{H} \},$$

$$L_{2} = \mathcal{P}(L_{H}) \setminus \{\emptyset\},$$

$$\ell_{2}(\mathcal{P}(e) \setminus \{\emptyset\}) = \ell_{H}(e),$$

$$w_{2}(\mathcal{P}(e) \setminus \{\emptyset\}) = w_{H}(e).$$

Two representative level-2 superedges are:

• Trigger superedge:

$$\mathcal{P}(\{\text{Stress}, \text{Anxiety}\}) \setminus \{\emptyset\}$$

$$= \{\{\text{Stress}\}, \{\text{Anxiety}\}, \{\text{Stress}, \text{Anxiety}\}\},$$
carrying labels $\ell_2 = \{\text{triggers}\}$ and weight $w_2 = 0.85$.

• Junction superedge at Depression:

$$\mathcal{P}\big(\{\text{Anxiety}, \text{Depression}, \text{Coping}\}\big) \setminus \{\emptyset\}$$

$$= \big\{\{\text{Anxiety}\}, \ \{\text{Depression}\}, \ \{\text{Coping}\}, \ \{\text{Anxiety}, \text{Depression}\}, \dots, \\ \{\text{Anxiety}, \text{Depression}, \text{Coping}\}\big\},$$
with labels $\ell_2 = \{\text{contributes_to}, \text{mitigates}\}$ and weight $w_2 = 0.75$.

These level-2 superedges unpack each hyperedge into all its nonempty subcollections, enabling hierarchical analysis of multi-concept associations in mental-health cognition.

Example 3.10 (Socioeconomic Semantic 2-SuperHyperGraph). Let the base set of key socioeconomic concepts be

 $V = \{ Democracy, EconomicGrowth, Education, SocialMobility, IncomeInequality \}.$

Define the relation-label set

$$L = \{ \text{ promotes, mediates, reduces, increases } \},$$

and the directed edge set

$$E = \{ (Democracy, EconomicGrowth), (Education, SocialMobility), \}$$

(SocialMobility, IncomeInequality), (EconomicGrowth, IncomeInequality)}.

Assign labels by

```
\ell: \begin{cases} (\operatorname{Democracy}, \operatorname{EconomicGrowth}) \mapsto \mathtt{mediates}, \\ (\operatorname{Education}, \operatorname{SocialMobility}) \mapsto \mathtt{promotes}, \\ (\operatorname{SocialMobility}, \operatorname{IncomeInequality}) \mapsto \mathtt{reduces}, \\ (\operatorname{EconomicGrowth}, \operatorname{IncomeInequality}) \mapsto \mathtt{increases}, \end{cases}
```

and weights by

$$w: \begin{cases} \text{(Democracy, EconomicGrowth)} \mapsto 0.70, \\ \text{(Education, SocialMobility)} \mapsto 0.80, \\ \text{(SocialMobility, IncomeInequality)} \mapsto 0.60, \\ \text{(EconomicGrowth, IncomeInequality)} \mapsto 0.75. \end{cases}$$

Then $G = (V, E, L, \ell, w)$ is a Semantic Graph modeling these constructs.

Its induced Semantic HyperGraph

$$H = (V, E_H, L_H, \ell_H, w_H)$$

has hyperedges

$$E_H = \{\{u, v\} : (u, v) \in E\} \cup$$

{{EconomicGrowth, SocialMobility, IncomeInequality}},

since IncomeInequality has two semantic predecessors. Here

$$L_H = \mathcal{P}(L) \setminus \{\emptyset\},$$

$$\ell_H(e) = \{\ell(u, v) : (u, v) \in E, \{u, v\} \subseteq e\},$$

$$w_H(e) = \max_{\substack{(u, v) \in E \\ \{u, v\} \subseteq e}} w(u, v).$$

For n = 2, the Semantic 2-SuperHyperGraph is

$$SNHG^{(2)} = (V_2, E_2, L_2, \ell_2, w_2),$$

where

$$V_{2} = \mathcal{P}^{2}(V),$$

$$E_{2} = \{\mathcal{P}(e) \setminus \{\emptyset\} \mid e \in E_{H}\},$$

$$L_{2} = \mathcal{P}(L_{H}) \setminus \{\emptyset\},$$

$$\ell_{2}(\mathcal{P}(e) \setminus \{\emptyset\}) = \ell_{H}(e),$$

$$w_{2}(\mathcal{P}(e) \setminus \{\emptyset\}) = w_{H}(e).$$

Two illustrative level-2 superedges are:

$$\mathcal{P}(\{\text{Education}, \text{SocialMobility}\}) \setminus \{\emptyset\}$$

= {{Education}, {SocialMobility}, {Education, SocialMobility}},

with labels {promotes} and weight 0.80; and

$$\mathcal{P}(\{\text{EconomicGrowth}, \text{SocialMobility}, \text{IncomeInequality}\}) \setminus \{\emptyset\}$$

$$= \{ \{ EconomicGrowth \}, \{ SocialMobility \}, \{ IncomeInequality \}, \dots \}, \}$$

with labels {increases, reduces} and weight 0.75.

These superedges unpack each hyperedge into all nonempty subcollections, enabling hierarchical analysis of complex concept associations in social-science contexts.

Theorem 3.11. For any Semantic HyperGraph $H = (V, E_H, L_H, \ell_H, w_H)$ and integer $n \ge 1$:

- (1) $SNHG^{(n)}$ satisfies the definition of an n-SuperHyperGraph.
- (2) $SNHG^{(1)}$ recovers H up to hypergraph isomorphism.

Proof: (1) *n*-SuperHyperGraph structure. By construction,

$$V_n = \mathcal{P}^n(V), \quad E_n \subseteq \mathcal{P}(V_n) \setminus \{\emptyset\}.$$

Hence $SNHG^{(n)} = (V_n, E_n, L_n, \ell_n, w_n)$ meets the axioms of an n-SuperHyperGraph.

(2) Generalization of H. When n=1, $\mathcal{P}^0(e)=e$ for each $e\in E_H$. Therefore

$$V_1 = \mathcal{P}(V), \qquad E_1 = \{ e : e \in E_H \} = E_H.$$

Moreover, $\ell_1(e) = \ell_H(e)$ and $w_1(e) = w_H(e)$ for all e. The natural bijection $\iota : V \to \{\{v\} : v \in V\} \subset V_1$ identifies each original vertex v with its singleton $\{v\}$. Under ι , SNHG⁽¹⁾ is isomorphic to H. Thus SNHG⁽¹⁾ exactly recovers and generalizes the Semantic HyperGraph.

4 Conclusion and Future Work

In this paper, we have extended Behavior Graphs and Semantic Graphs using HyperGraphs and SuperHyper-Graphs to produce hierarchical, multi-scale representations of cognitive and behavioral phenomena.

As future work, we plan to investigate further extensions by incorporating fuzzy and neutrosophic frameworks, including Fuzzy Sets [43, 44, 45], HyperFuzzy Sets [46, 47], Picture Fuzzy Sets [48, 49], Hesitant Fuzzy Sets [50, 51], Neutrosophic Sets [52, 53], and Plithogenic Sets [54, 55].

Funding

No external funding or financial support was provided for this study.

Acknowledgments

The authors wish to thank all colleagues and mentors whose feedback and encouragement enriched this work. We are grateful to the community of researchers whose foundational contributions informed our developments. Special appreciation goes to the institutions that offered resources and technical infrastructure throughout this project.

Data Availability

This manuscript presents purely conceptual work without empirical data. Scholars interested in these ideas are invited to undertake experimental or case-study research to substantiate and extend the proposed frameworks.

Ethical Approval

This paper involves no human or animal subjects and thus did not require ethics committee review or approval.

Use of Generative AI and AI-Assisted Tools

We use generative AI and AI-assisted tools for tasks such as English grammar checking, and We do not employ them in any way that violates ethical standards.

Conflicts of Interest

The authors declare that there are no competing interests concerning the content or publication of this article.

Disclaimer

The theoretical models and propositions herein have not yet been subjected to practical validation. Readers should independently verify all citations and be aware that inadvertent inaccuracies may remain. The opinions expressed are those of the authors and do not necessarily represent the views of affiliated organizations.

References

- [1] Reinhard Diestel. Graduate texts in mathematics: Graph theory.
- [2] Jonathan L Gross, Jay Yellen, and Mark Anderson. Graph theory and its applications. Chapman and Hall/CRC, 2018.
- [3] Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.
- [4] Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer, 1, 2013.
- [5] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 3558–3565, 2019.
- [6] Derun Cai, Moxian Song, Chenxi Sun, Baofeng Zhang, Shenda Hong, and Hongyan Li. Hypergraph structure learning for hypergraph neural networks. In IJCAI, pages 1923–1929, 2022.
- [7] Yue Gao, Zizhao Zhang, Haojie Lin, Xibin Zhao, Shaoyi Du, and Changqing Zou. Hypergraph learning: Methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(5):2548–2566, 2020.
- [8] Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and related problems in logic and ai. In European Workshop on Logics in Artificial Intelligence, pages 549–564. Springer, 2002.
- [9] Elias C Stavropoulos, Vassilios S Verykios, and Vasileios Kagklis. A transversal hypergraph approach for the frequent itemset hiding problem. *Knowledge and information systems*, 47:625–645, 2016.
- [10] Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Wipf. From hypergraph energy functions to hypergraph neural networks. In *International Conference on Machine Learning*, pages 35605–35623. PMLR, 2023.
- [11] Mohammad Hamidi, Florentin Smarandache, and Mohadeseh Taghinezhad. Decision Making Based on Valued Fuzzy Superhypergraphs. Infinite Study, 2023.
- [12] Mohammed Alqahtani. Intuitionistic fuzzy quasi-supergraph integration for social network decision making. International Journal of Analysis and Applications, 23:137–137, 2025.
- [13] N. B. Nalawade, M. S. Bapat, S. G. Jakkewad, G. A. Dhanorkar, and D. J. Bhosale. Structural properties of zero-divisor hypergraph and superhypergraph over \mathbb{Z}_n : Girth and helly property. *Panamerican Mathematical Journal*, 35(4S):485, 2025.
- [14] Florentin Smarandache. Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-) HyperAlgebra. Infinite Study, 2020.
- [15] E. J. Mogro, J. R. Molina, G. J. S. Canas, and P. H. Soria. Tree tobacco extract (Nicotiana glauca) as a plithogenic bioinsecticide alternative for controlling fruit fly (Drosophila immigrans) using n-superhypergraphs. Neutrosophic Sets and Systems, 74:57–65, 2024
- [16] Reinhard Diestel. Graph theory. Springer (print edition); Reinhard Diestel (eBooks), 2024.
- [17] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503, 2011.
- [18] Thomas Jech. Set theory: The third millennium edition, revised and expanded. Springer, 2003.
- [19] Eiko I Fried, Sacha Epskamp, Randolph M Nesse, Francis Tuerlinckx, and Denny Borsboom. What are good'depression symptoms? comparing the centrality of dsm and non-dsm symptoms of depression in a network analysis. *Journal of affective* disorders, 189:314–320, 2016.
- [20] Angélique OJ Cramer, Claudia D Van Borkulo, Erik J Giltay, Han LJ Van Der Maas, Kenneth S Kendler, Marten Scheffer, and Denny Borsboom. Major depression as a complex dynamic system. PloS one, 11(12):e0167490, 2016.
- [21] Ajoy Kanti Das, Rajat Das, Suman Das, Bijoy Krishna Debnath, Carlos Granados, Bimal Shil, and Rakhal Das. A comprehensive study of neutrosophic superhyper bci-semigroups and their algebraic significance. *Transactions on Fuzzy Sets and Systems*, 8(2):80, 2025.
- [22] Florentin Smarandache. SuperHyperFunction, SuperHyperStructure, Neutrosophic SuperHyperFunction and Neutrosophic SuperHyperStructure: Current understanding and future directions. Infinite Study, 2023.
- [23] Florentin Smarandache. Superhyperstructure & neutrosophic superhyperstructure, 2024. Accessed: 2024-12-01.
- [24] Mohammad Hamidi, Florentin Smarandache, and Elham Davneshvar. Spectrum of superhypergraphs via flows. Journal of Mathematics, 2022(1):9158912, 2022.
- [25] Florentin Smarandache. Introduction to the n-SuperHyperGraph-the most general form of graph today. Infinite Study, 2022.
- [26] Mohammad Hamidi and Mohadeseh Taghinezhad. Application of Superhypergraphs-Based Domination Number in Real World. Infinite Study, 2023.

- [27] Takaaki Fujita and Florentin Smarandache. A concise study of some superhypergraph classes. Neutrosophic Sets and Systems, 77:548–593, 2024.
- [28] Jianhua Sun, Qinhong Jiang, and Cewu Lu. Recursive social behavior graph for trajectory prediction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 660–669, 2020.
- [29] Guoshuai Zhang, Jiaji Wu, Gwanggil Jeon, Yuan Chen, Yuhui Wang, and Mingzhou Tan. Revealing social group long-term survival for smart cities based on behavior graph structures using virtual game. IEEE Internet of Things Journal, 10(21):18733-18744, 2023.
- [30] Xiao Yu, Weimin Li, Cai Zhang, Jingchao Wang, Yan Zhao, Fangfang Liu, Quanke Pan, Huazhong Liu, Jihong Ding, and Dehua Chen. Time-aware multi-behavior graph network model for complex group behavior prediction. *Information Processing & Management*, 61(3):103666, 2024.
- [31] Junfeng Tian and He Zhang. A credible cloud service model based on behavior graphs and tripartite decision-making mechanism. In Cloud Security: Concepts, Methodologies, Tools, and Applications, pages 903–922. IGI Global, 2019.
- [32] Zhuo Zhou, Wenxuan Liu, Danni Xu, Zheng Wang, and Jian Zhao. Uncovering the unseen: Discover hidden intentions by micro-behavior graph reasoning. In *Proceedings of the 31st ACM International Conference on Multimedia*, pages 6623–6633, 2023.
- [33] Yuanxing Liu, Zhaochun Ren, Wei-Nan Zhang, Wanxiang Che, Ting Liu, and Dawei Yin. Keywords generation improves e-commerce session-based recommendation. In Proceedings of The Web Conference 2020, pages 1604–1614, 2020.
- [34] Gabriel de Souza P Moreira, Sara Rabhi, Ronay Ak, Md Yasin Kabir, and Even Oldridge. Transformers with multi-modal features and post-fusion context for e-commerce session-based recommendation. arXiv preprint arXiv:2107.05124, 2021.
- [35] Ismael Ali and Austin Melton. Semantic-based text document clustering using cognitive semantic learning and graph theory. In 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pages 243-247. IEEE, 2018.
- [36] Wenjuan Liu, Zhengyan Sun, Subo Wei, Shunxiang Zhang, Guangli Zhu, and Lei Chen. Ps-gcn: Psycholinguistic graph and sentiment semantic fused graph convolutional networks for personality detection. *Connection Science*, 36(1):2295820, 2024.
- [37] Andrea Bonaccorsi, Nicola Melluso, Filippo Chiarello, and Gualtiero Fantoni. The credibility of research impact statements: A new analysis of ref with semantic hypergraphs. Science and Public Policy, 48(2):212–225, 2021.
- [38] Telmo Menezes and Camille Roth. Semantic hypergraphs. arXiv preprint arXiv:1908.10784, 2019.
- [39] Bernardo Pereira Nunes, Ricardo Kawase, Besnik Fetahu, Stefan Dietze, Marco A Casanova, and Diana Maynard. Interlinking documents based on semantic graphs. Procedia Computer Science, 22:231–240, 2013.
- [40] Shou-de Lin and Hans Chalupsky. Discovering and explaining abnormal nodes in semantic graphs. IEEE Transactions on Knowledge and Data Engineering, 20(8):1039–1052, 2008.
- [41] Pranav S Ambadi, Kristin Basche, Rebecca L Koscik, Visar Berisha, Julie M Liss, and Kimberly D Mueller. Spatio-semantic graphs from picture description: applications to detection of cognitive impairment. Frontiers in Neurology, 12:795374, 2021.
- [42] David Chiang, Frank Drewes, Daniel Gildea, Adam Lopez, and Giorgio Satta. Weighted dag automata for semantic graphs. Computational linguistics, 44(1):119–186, 2018.
- [43] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.
- [44] Klaus-Peter Adlassnig. Fuzzy set theory in medical diagnosis. IEEE Transactions on Systems, Man, and Cybernetics, 16(2):260–265, 1986.
- [45] John N Mordeson and Premchand S Nair. Fuzzy graphs and fuzzy hypergraphs, volume 46. Physica, 2012.
- [46] Young Bae Jun, Kul Hur, and Kyoung Ja Lee. Hyperfuzzy subalgebras of bck/bci-algebras. Annals of Fuzzy Mathematics and Informatics, 2017.
- [47] Jayanta Ghosh and Tapas Kumar Samanta. Hyperfuzzy sets and hyperfuzzy group. Int. J. Adv. Sci. Technol, 41:27–37, 2012.
- [48] Raed Hatamleh, Abdullah Al-Husban, Sulima Ahmed Mohammed Zubair, Mawahib Elamin, Maha Mohammed Saeed, Eisa Abdolmaleki, Takaaki Fujita, Giorgio Nordo, and Arif Mehmood Khattak. Ai-assisted wearable devices for promoting human health and strength using complex interval-valued picture fuzzy soft relations. European Journal of Pure and Applied Mathematics, 18(1):5523–5523, 2025.
- [49] Bui Cong Cuong and Vladik Kreinovich. Picture fuzzy sets-a new concept for computational intelligence problems. In 2013 third world congress on information and communication technologies (WICT 2013), pages 1–6. IEEE, 2013.
- [50] Vicenç Torra and Yasuo Narukawa. On hesitant fuzzy sets and decision. In 2009 IEEE international conference on fuzzy systems, pages 1378–1382. IEEE, 2009.
- [51] Vicenç Torra. Hesitant fuzzy sets. International journal of intelligent systems, 25(6):529-539, 2010.
- [52] Said Broumi, Mohamed Talea, Assia Bakali, and Florentin Smarandache. Single valued neutrosophic graphs. Journal of New theory, (10):86–101, 2016.
- [53] Muhammad Akram, Hafsa M Malik, Sundas Shahzadi, and Florentin Smarandache. Neutrosophic soft rough graphs with application. Axioms, 7(1):14, 2018.
- [54] Nivetha Martin. Plithogenic swara-topsis decision making on food processing methods with different normalization techniques. Advances in Decision Making, 69, 2022.
- [55] P Sathya, Nivetha Martin, and Florentine Smarandache. Plithogenic forest hypersoft sets in plithogenic contradiction based multi-criteria decision making. Neutrosophic Sets and Systems, 73:668–693, 2024.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.